Robotics
Healthcare
Development of Ventricular Assistive Device
Project Principal Investigator(s): Madhav Rao
A novel electromechanical design to assist pumping of weak heart is proposed. The prototype is designed as a feasible alternative to the existing ventricular assistive device (VAD). The conventional device used primarily in the medical practice, suffers from infection, blood clotting, and internal bleeding problems, that are not easily diagnosable. In this work, a minimally invasive VAD prototype is planned to be designed to assist in the pumping of the heart by inflating and deflating a balloon wrapped around the heart. The inflation and deflation cycle of the balloon is setup in synchronous to the ECG signal via a real time feedback subsystem. The real time feedback unit is designed in a view to promote blood flow in phase with that of the varying ECG signal, based on the heart activity of the user. The designed prototype was verified on a 3D modeled heart integrated with a pressure sensor and signal analysis was performed to further verify the working of the design. The proposed design is suggested to work better than the existing device and avoid other undesirable effects.